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A B S T R A C T

Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine
biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the
identification of fish species on underwater images, and we compare our model performances to human ability in
terms of speed and accuracy. We first tested the performance of a convolutional neural network (CNN) trained
with different photographic databases while accounting for different post-processing decision rules to identify 20
fish species. Finally, we compared the performance of species identification of our best CNN model with that of
humans on a test database of 1197 fish images representing nine species. The best CNN was the one trained with
900,000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the environment (e.g. reef bottom
or water). The rate of correct identification was 94.9%, greater than the rate of correct identification by humans
(89.3%). The CNN was also able to identify fish individuals partially hidden behind corals or behind other fish
and was more effective than humans to identify fish on smallest or blurry images while humans were better to
identify fish individuals in unusual positions (e.g. twisted body). On average, each identification by our best CNN
using a common hardware took 0.06 s. Deep Learning methods can thus perform efficient fish identification on
underwater images and offer promises to build-up new video-based protocols for monitoring fish biodiversity
cheaply and effectively.

1. Introduction

Coral reefs host a massive and unique biodiversity with, for in-
stance,> 6000 fish species (Mouillot et al., 2014) and provide key
services to millions of people worldwide (Rogers et al., 2017). Yet, coral
reefs are increasingly impacted by global warming, pollution and
overfishing (Cinner et al., 2018; Graham et al., 2011; Hughes et al.,
2017; Robinson et al., 2017; Scott & Dixson, 2016). The monitoring of
fish biodiversity through space and time on coral reefs (Halpern et al.,
2008; Jackson et al., 2001) is thus a critical challenge in marine ecology
in order to better understand the dynamics of these ecosystems, predict
fisheries productivity for dependent human communities, and improve
conservation and management strategies to ensure their sustainability
(Krueck et al., 2017; Pandolfi et al., 2003).

Most surveys of coral reef fishes are based on underwater visual
censuses (UVC) carried out by scuba divers (Brock, 1954; Cinner et al.,
2016; Cinner et al., 2018; Thresher & Gunn, 1986). While non-de-
structive, this protocol requires the identification and enumeration of
hundreds of individuals belonging to hundreds of species so it can only
be performed by highly trained scientific divers while being time con-
suming. In addition, the accuracy of such visual-based assessments is
highly dependent on conditions (depth, dive duration) and divers ex-
perience while the presence of diver biases the detection of some furtive
species (Chapman & Atkinson, 1986; Harvey et al., 2004; Sale & Sharp,
1983; Watson & Harvey, 2007; Willis, 2001).

Over the last decade, underwater cameras have been increasingly
used to record fish individuals on fixed videos, along belt transects
(Cappo et al., 2003; Langlois et al., 2010; Mallet & Pelletier, 2014), or
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around baits to attract predators (Harvey et al., 2007; Watson et al.,
2005; Willis & Babcock, 2000). Video-based surveys provide estima-
tions of fish abundance and species diversity similar to UVC-based
surveys (Pelletier et al., 2011). Video-based methods can be used to
overcome the limitations of human-based surveys (depth, time under-
water). They also provide a permanent record that could later be re-
analyzed. However, assessing fish biodiversity and abundance from
videos requires annotation by highly trained specialists and is a de-
manding, time-consuming and expensive task with up to several hours
required to identify fish individuals per hour of video (Francour et al.,
1999). There is thus an urgent need to develop new tools for automatic
identification of fish individuals on photos and videos to provide ac-
curate, efficient, repeatable and cost-effective monitoring of reef eco-
systems.

Automatic and accurate identification of organisms on photos is
crucial to move towards automatic video processing. In addition, au-
tomatic identification of species on photos is especially relevant for
citizen science. For instance, the application pl@ntNet (https://
plantnet.org/) automatized the identification of 13,000 species of
plants. For fishes, some public tools like inaturalist.org or fishpix
(http://fishpix.kahaku.go.jp) offer the possibility to upload images that
will be manually identified by experts. These valuable initiatives would
benefit from the support of automatic identification algorithms to save
time of experts.

The performance of recent methods dedicated to the automatic
identification of objects on images has drastically increased over the
last decade (Lowe, 1999; Siddiqui et al., 2017). However, some of these
methods have been tested only on images recorded in standardized
conditions, in terms of light and/or fish position (e.g. only lateral
views) (Alsmadi et al., 2010; Levi, 2008). Identification of fish in-
dividuals on ‘real-life’ underwater images is more challenging because
(i) color and brightness are highly variable between images and even
within a given image, (ii) the environment is textured and has a com-
plex 3-dimentional architecture, (iii) fish can be recorded in various
positions and are often hidden behind other fish or corals, and (iv) the
acquisition camera and its internal parameters can be variable.

Recently, an accurate automation of detection and identification of
fish individuals has been obtained (Shortis et al., 2016) using machine-
learning methods such as support vectors machines (Blanc et al., 2014),
nearest neighbor classifiers (Levi, 2008), discriminant analysis classi-
fiers (Spampinato et al., 2010) or Deep Learning (Li et al., 2015). The
latest competitions (Joly et al., 2016) and comparisons (Villon et al.,
2016) show that Deep Learning based methods, which are a type of
neural network combining simultaneously automatic image descriptor
and descriptor classification, tend to achieve the highest performance,
particularly convolutional neural network (CNN) that add deep layers
to classical neural networks (Lecun et al., 2015).

However, the accuracy of CNN methods is highly dependent on the
extent and the quality of data used during the training phase, i.e. the set
of images annotated by experts for all classes to identify. The effects of
the extent of the training database (i.e. the number of images per class)
and associated post-processing decision rules on the performance of the
whole identification process remain untested. Since real-life videos of
coral reef fishes and thus images extracted from those videos are highly
diverse in terms of surrounding conditions (environment, light, con-
trast) and fish positions, the performance of identification methods
must be carefully tested using an independent dataset to assess its ro-
bustness over changing conditions.

Furthermore, the performance of models should be compared to the
performance of humans to determine whether machine-based assess-
ment of fish biodiversity provides an advantage over traditional human
processing of images (Matabos et al., 2017). Here we tested the per-
formance of 4 models, built with the same CNN architecture, for au-
tomatic identification of fish species on coral reefs. Specifically, we
assessed the effect of several training image datasets and several deci-
sion rules, with a particular focus to identify fish partially hidden be-
hind the coral habitat. We then compared the performances of the best
CNN models to those of humans.

2. Methods

2.1. Image acquisition for training and testing CNN models

We used GoPro Hero3+ black and GoPro Hero4+ black cameras to
record videos at 30 fps over 50 reef sites around the Mayotte island
(Mozambique Channel, Western Indian Ocean) including fringing and
barrier reefs, and at depth from 1 to 25m. Videos were recorded from
April to November 2015. Recording conditions varied between sites and
days, especially in term of light and environment (i.e. proportion of
hard and soft corals, sand and water visible). All videos were recorded
with a resolution of 1280×720 (HD) and 1920×1080 pixels (full HD)
with default settings for color temperature and exposure (i.e. no use of
protune or automatic color balance adjustment).

For all recordings, the cameras remained stationary and no artificial
light or filter were used. We recorded 116 videos representing a total of
25 h.

For all videos, 5 frames per second were extracted leading to a
database of 450,000 frames. Fish individuals were delineated and
identified by undergraduate, master degree students and PhD students
in marine biology trained for fish identification on videos with the
support of identification keys and under the supervision of experts
(Froese & Pauly, 2000; Taquet & Diringer, 2007). Each annotation
consisted in drawing a rectangle bounding box around a single fish
individual, including only its very close context as illustrated on Fig.1.a,

Fig. 1. Thumbnails samples.
a) Examples of thumbnails of whole fish individuals from the training database and b) examples of thumbnails extracted from whole fish picture to build “part of fish”
and “part of species” classes.
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and associating a label (i.e. species name) to this individual. We call
those specific images “thumbnails”.

The criteria for the annotation were:

1) Annotate a fish only if there is no>10% of its surface covered by
another object (fish, coral, or substrate).

2) Annotate a fish only if it can be identified at the species level in the
frame (i.e. independently from previous or next frames where the
same fish could have a better position for identification).

3) Annotate a fish only if its apparent size is larger than 3000 squared
pixels, i.e. ignoring fish individuals too far from the camera.

4) Annotate images from different habitats and depths to represent a
broad range of light conditions and environment, and target at least
1200 thumbnails per species.

We did not consider thumbnails of individuals in positions where
they are hard to identify (such as fish seen from front) since they would
bring more noise than relevant information for the algortihm as the
discriminating parts of the fish are hidden (specific color pattern,
marks, etc). We did not process the image with background subtraction
for 2 reasons:

1) We did assume that in our case the context helps to identify fish
species, as some species tend to be associated with some particular
environment such as Amphiprion in sea anemone, Chromis viridis on
Acroporas, Caesionidae in plain water etc…

2) We wanted our process to be used on full images. In such context,
separating fish individuals from their background would be either
manual or not reliable.

This annotation procedure yielded a training dataset (T0) with
44,625 annotated fish thumbnails.

belonging to 20 species (Table 1). The 20 species present in the
training dataset represent the most common species appearing in the
videos and belong to 12 families among the most diverse and abundant
on coral reefs worldwide (e.g. Pomacentridae, Acanthuridae,

Chaetodontidae, Labridae).
Models were then tested using a set of images independent from the

ones used for the training phase to ensure a cross validation procedure
and that model performance reflects real-life study case. More specifi-
cally, the test dataset was built using 6 videos recorded in contexts
different from those of videos used for training (i.e. sites or days not
included in the training database). Annotations of these videos were
made like the training dataset except that it included fish individuals
partially hidden by other fish or by corals as well as fish individuals
viewed from front or back (their identity being checked using when
necessary previous or next frames). As our goal is to identify fish species
on images and photos, the test without any filter allows to assess to
which extent our algorithm is performing to help users to take a picture
good enough for fish identification.

We obtained a test dataset of 4405 annotated fish thumbnails be-
longing to 18 out of the 20 species present in the training dataset (Table
S3). We then randomly selected a subset of 1197 fish thumbnails be-
longing to 9 species to compare the performance of humans vs. ob-
tained models (Table S3).

2.2. Deep-learning algorithm

We used a convolutional neural network (CNN) architecture to build
a fish identification model (Schmidhuber, 2015). CNNs are a class of
deep learning algorithms used to analyze data and particularly to
classify objects from images (Krizhevsky et al., 2012).

CNNs are made of layers of interconnected neurons and each neuron
includes a ‘convolutional kernel’ that computes a set of mathematical
operations (defined by ‘weights’) on the matrices of values describing
the image (i.e. values for each color channel for each pixel).

Convolutional features are combinations of pixel values that encode
information about target classes. Low level features can detect edges or
color patterns, while, high level features might differentiate different
fish shapes.

This process yielded ‘feature maps’, i.e. a vector describing image
characteristics (shapes, colors, statistical information of the image).

The main difference between CNNs and other classifiers is that
CNNs build the “feature extractors” (convolutions in the case of CNN)
and the classifier conjointly.

Then the last layer of the network classifies those feature maps with
a soft-max method and gives as output scores corresponding to the
“probability” that each image belongs to each of the learned classes
(Lecun et al., 2015). More precisely, the training phase of the network
consists in iteratively modifying the weights of the convolutional ker-
nels (hence features maps) to optimize the classification score of all
classes.

We used a GoogLeNet architecture as it was the winner of the 2015
competition imageNet (Szegedy et al., 2015), an identification chal-
lenge on 1000 different classes. This CNN is composed of 22 layers. It
uses inception modules. Inception modules allow the network to use
convolutions of different sizes (1*1, 3*3 and 5*5 pixels) and to weight
each of these convolutions. This network could thus account more or
less strongly for the context of each pixel, which increases the range of
possibilities to improve its performance during the training.

A link to a depository with architecture details is given at the end of
references. We stopped the network training after 70 epochs (i.e. a
complete scope of the dataset where each image is used only once), to
prevent overfitting. We used a learning rate of 10−5, an exponential
learning decay with a Gamma of 0.95, a dropout of 50% and an Adam
Solver type as learning parameters. Those are classic hyper-parameters
for a fast convergence of the network without over-fitting (Srivastava
et al., 2014). The weight initialization is also classic with a random
Gaussian initialization. The training lasted 8 days on our configuration;
we trained and ran our code on a computer with 64GB of RAM, an i7
3.50GHz CPU and a Titan X GPU card for 900,000 images.

We used at least 2200 thumbnails per fish species class, and batches

Table 1
Raw success rate (%) of the 4 CNN models trained with different thumbnails
datasets for identifying 18 fish species. See details about training databases in
Table S2.

Species Only
whole
fish
(T1)

Whole
fish and
part of
fish (T2)

Whole fish,
environment
and part of fish
(T3)

Whole fish,
environment
and part of
species (T4)

Abudefduf sparoides 80.8 94.9 85.8 82.8
Abudefduf vaigiensis 94.5 89.0 89.0 80.0
Chaetodon trifascialis 94.7 90.4 91.0 85.1
Chromis weberi 98.8 96.6 92.9 98.8
Dascyllus carneus 4.0 91.5 92.3 91.5
Monotaxis

grandoculis
90.0 68.0 77.7 79.1

Myripristis botche 100 80.0 75.0 95.0
Naso elegans 96.2 92.4 89.7 95.1
Naso vlamingii 92.6 95.3 89.1 95.8
Nemateleotris

magnifica
100 98.2 99.5 99.1

Odonus niger 79.5 91.4 92.6 81.8
Plectroglyphidodon

lacrymatus
100 100 74.2 94.0

Pomacentrus sulfureus 97.8 67.6 82.5 73.8
Pterocaesio tile 100 100 100 99.5
Pygoplytes diacanthus 84.2 91.5 84.2 86.8
Thalassoma

hardwicke
83.9 82.7 88.0 87.3

Zanclus cornutus 93.3 84.3 86.4 89.0
Zebrasoma scopas 89.0 88.8 88.8 92.7
Mean identification

success rate
87.6 87.9 87.7 86.9
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of 16 images to train our network. We ran this architecture on Caffe (Jia
et al., 2014). To focus on the impact of the training data, we used the
same CNN architecture for our training and test procedures.

2.3. Building the training datasets

Using the raw training dataset of 20 fish species (Table S1) we built
4 different datasets to assess the influence of the dataset building on
classification results (Table S2).

The first training dataset T1 contained raw fish thumbnails (T0) and
their respective mirror images.

More precisely, we doubled the number of thumbnails per fish in-
dividual by flipping each thumbnail with respect to the vertical axis.
Such a procedure homogenizes the proportion of left-oriented and
right-oriented individuals in the database and we hypothesize it could
improve the average identification rate since fish individuals are seen in
all positions.

The second training dataset T2 contained fish thumbnails from T1
plus “part of fish” thumbnails. Thumbnails of this class were obtained
by splitting each thumbnail of T0 into 4 parts: upper part, lower part,
right part, and left part as shown on Fig.1. b. We hypothesized that this
class can prevent from misidentification of partially hidden individuals.
For instance, if a black and white fish is partially hidden so that only its
dark part is visible it would likely be confounded with a full dark fish.

The third training dataset T3 contained fish thumbnails from T2
plus thumbnails of a single class “Environment”. Environment thumb-
nails were extracted at random in portion of frames where no fish was
detected. We hypothesized that such a procedure can help distin-
guishing between fish species given the high diversity of environments
present around them, i.e. allowing CNN models to find more efficiently
features discriminating fishes whatever the background around them.

The fourth training dataset T4 contained thumbnails from T3 minus
the “part of fish”, which is replaced by 20 classes “part of species”
obtained by splitting thumbnails from each species. The difference
between T3 and T4 was that T3 contained only one global class “part of
fish” whereas T4 contained as many “part of species” classes as there
were “fish” species.

2.4. Testing the performance of models

We first compared the performance of the 4 models trained using
each of the 4 training datasets. In addition, we tested the performance
of models after correcting their raw outputs using two a posteriori de-
cision rules. First, since the networks trained with T2, T3 or T4 are
likely to recognize environment samples with a high confidence score
(over 99%) they could thus classify some fish as an environment class
(i.e. false positive). We therefore defined a decision rule (r1): when the
first proposition of the network was ‘environment’ with a confidence
lower than 99% we provide, as final output, the fish class with the
highest probability.

Similarly, as “part of species” classes present in T4 were just a
methodological choice to improve model performance (and hence were
absent from the test database), we defined a second decision rule (r2):
when the result given by the network is “part of species X", we provide,
as final output, “species X".

We then compared the performance of the best model with the
performance of humans, in terms of accuracy and time needed to
identify fish thumbnails. This experiment aimed to compare the results
obtained by humans to those obtained by the CNN using a fair method.
This means that during the comparison procedure both CNN and hu-
mans were shown thumbnails without any contextual information
(there was no general view of the scene), and the thumbnails were
never seen before the test procedure. The procedure could even be
slightly in favor of humans because they knew that there were only
9 species to classify, whereas the CNN worked from the 21 species
learned and misclassification could occur with a higher probability.

Our goal was to allow humans to identify species as fast as possible
in this particular context. For this purpose, we developed an online
survey tool operating in Chrome web browser which allowed users to
easily and quickly identify a fish on a picture displayed at the center of
the window by either writing the name of the species (with auto-
completion) or to select it from a list. A “help” sheet showing a re-
ference picture of the fish species to identify was available in the same
window (Fig. S1). Once a user selected a species, time to perform the
identification was saved and a new randomly chosen fish picture was
displayed.

This comparison was performed on 1197 randomly chosen thumb-
nails of only 9 species present in the test thumbnail dataset (Table S3)
to ease the test for humans. The test lasted 20min with the help of 10
undergraduate students, 2 Master Degree and 2 PhD student in biology
from the University of Montpellier who were previously trained to
identify these fish species. Such a short test duration for humans re-
duces tiredness that could decrease identification accuracy and ra-
pidity. We then compared the answers to the ground truth (i.e. iden-
tification made by experts in fish taxonomy) and computed the time
needed to perform each identification. We finally compared correct
identification rate and time per fish individual between humans and the
best CNN model.

3. Results

3.1. Influence of the training database and of post-processing on model
performance

The 4 CNN models obtained with 4 different datasets (T1, T2, T3,
T4) had similar mean identification success rate, close to 87% (Table 1).
However, there were marked differences in correct identification rate
between models for several species. For instance, Dascyllus carneus was
correctly identified in only 4% of the cases by model trained with only
whole fish thumbnails (T1) while it was correctly identified in>90%
of cases by the three other models. Conversely, Pomacentus sulfureus
was more often correctly identified by the models trained with T1 than
by models trained with environment thumbnails (T3 and T4).

Post-processing raw outputs of the model T4 following decision rule
r1 (i.e. environment not considered as a correct result), improved cor-
rect identification rate from 86.9 to 90.2% (Table 2).

Adding decision rule r2 (i.e. identification of a part of a species
considered as a correct answer) increased this success rate to 94.1%
(Table 2). Hence, post-processing raw outputs of the model trained with
the most complete dataset provided the best identification rate. Among
the 18 species, success rate ranged from 85.2 to 100%, with only 3
species being correctly identified in< 90% of cases and 9 species being
correctly identified in> 95% of cases, including 3 with a correct
identification rate > 99%.

Confusions between 2 fish species were lower than 4% (Table 3).
Confusion between a fish and the environment was common when no
post-processing was applied with for instance up to 20.9% of Poma-
centrus sulfureus individuals misidentified as environment (Tables S4,
S5). However, applying decision rule r1 decreased this error rate
to< 4% (Table 3).

3.2. Performance of CNN models vs. humans

On average, each human identified 270 fish thumbnails during the
20-min test. Mean rate of correct classification for humans was of
89.3% with a standard deviation of 6% (Table 4). Rate of correct
classification achieved by the best model on the same thumbnails was
of 94.9% with a standard deviation of 3.3%. Correct classification rate
by the best model ranged from 88.2% (Abudefduf sparoides) to 98.2%
(Abudefduf vaigiensis). For only one species (Zanclus cornutus), the best
model had a lower performance than humans but both were higher than
97%. The mean time needed to identify a fish by humans was 5 s, with
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the fastest answer given in 2 s and the longest in 9 s. On average, each
classification by our final model took 0.06 s with hardware detailed
above.

When tested against humans using a challenge with only 9 potential
species, the network was more effective on smaller or blurrier thumb-
nails, while humans were better to recognize unusual positions (Fig. 2).
There were only 2% of fish individuals which were neither identified by
humans nor by the network (Fig. 2).

However, experts with>10 years of experience in the field may
have outperformed the CNN model in terms of correct identification
particularly for hidden or unusually positioned fish.

4. Discussion

Assessing the performance of the same CNN trained with four

different datasets demonstrates that correct identification rates were all
close to 87%. Thus, a training dataset made of> 1300 thumbnails of
each species could yield a success rate similar to the ones obtained in
image identification challenges in more controlled conditions (Siddiqui
et al., 2017). Beyond their number, thumbnails of each species used to
train the network were extracted from different videos and different
sites to include as many orientations of fish as possible and to embrace a
strong environmental variability in terms of light, colors and depth.
However, our best CNN model may perform more poorly with a broader
range of species across other locations and environments. Our 18 spe-
cies belong to 12 different families so are likely to differ in shape or
color. With much more congeneric species these differences would
make the identification much more challenging.

Despite a similar mean success rate, the performance of the four
models differed markedly for some species. Ten out of the 18 species
were more often correctly identified when CNN models were trained
using thumbnails of part of fish or environment, and eight other species
were better identified by the model trained with only whole fish pic-
ture. Additionally, some species were often misidentified as environ-
ment (Table S5), even if the probability of this class was lower than
99%.Such confusion could be explained by the fact that some small
species are always close to corals and of similar colors, e.g. the yellow
benthic fish Pomacentrus sulfureus. Similarly, for the small Dascyllus
carneus case, which is often misclassified with almost all fish species

Table 2
Success rate (%) of 3 CNN models for identifying 18 fish species. First column
presents accuracy based on raw output of a deep-learning model trained with
thumbnails of whole fish, part of species and environment (as last column of
Table 2). Second column presents accuracy after applying a decision rule ‘r1’
keeping most likely fish class if ‘environment’ was the most likely class. Third
column presents results after applying decision rule ‘r1’ plus decision rule ‘r2’:
“part of species X" is equivalent to “species X". Numbers are percentages of
correct fish identification.

Species Raw
output

Decision rule
r1

Decision rules r1
and r2

Abudefduf sparoides 82 88 91.9
Abudefduf vaigiensis 80 89 98
Chaetodon trifascialis 85.1 87.8 91.5
Chromis weberi 98.8 98.8 99.2
Dascyllus carneus 91.5 91.5 91.5
Monotaxis grandoculis 79.1 83.3 86.1
Myripristis botche 95 95 95
Naso elegans 95.1 96.7 97.8
Naso vlamingii 95.8 96 96
Nemateleotris magnifica 99.1 100 100
Odonus niger 81.8 81.8 85.2
Plectroglyphidodon lacrymatus 94 94 96
Pomacentrus sulfureus 73.7 78.1 87.9
Pterocaesio tile 99.5 100 100
Pygoplytes diacanthus 86.8 89.4 92.1
Thalassoma hardwicke 87.3 89.6 94.2
Zanclus cornutus 89 95.3 98.4
Zebrasoma scopas 92.7 92.7 92.7
Average success rate 86.9 90.2 94.1

Table 3
Performance and confusion rates of CNN model for 9 fish species.
The CNN was trained with dataset T4 (see Table 1), including thumbnails of whole fish, part of species and environment. Raw CNN outputs were post-processed

with following decision rules:
‘r1’: If the highest probability is lower than 99% and is for class “environment” then the fish class with the second highest probability is kept.
‘r2’: Outputs “part of species X" are considered as equivalent to “species X" (i.e. the scores of A. sparoides and part of A. sparoides were merged).
Columns indicate the species to classify, and rows indicate the results (most probable species) given by the model (i.e. percentages on the diagonal indicate success

rate). Only values over 1% are shown. Full names of species are in Table 1.

Species A.sparoides A. vaigiensis C. trifascialis N. elegans P. sulfureus P. diacanthus T. hardwicke Z. cornutus Z. scopas

A.sparoides 91.9 1.3
A. vaigiensis 1.1 98.2
C. Trifascialis 91.5 1.0
C. weberi 2.2 1.1 1.5
D. caruleus 3.9
N. elegans 97.8
P. sulfureus 1.0 1.8 1.0 87.9 2.5
P. diacanthus 3.8 92.1
P. lacrymatus 2.6
T. Hardwicke 2.0 1.5 94.2
Z. cornutus 1.0 98.5
Z. scopas 92.7
Environment 3.6 2.6 1.0

Table 4
Accuracy (success rate in %) of fish identification by humans and by the best
CNN model for 9 species.
The model was trained using thumbnails of whole fish, part of fish species and

environment (T?). Raw outputs were post-processed applying two decision
rules: (r1) keeping most likely fish class if “environment” was the most likely
class, and (r2) considering “part of species X" equivalent to “species X".

Species Number of thumbnails
tested

Deep-learning
model

Humans

Abudefduf sparoides 88 93.4 87.7
Abudefduf vaigiensis 47 97.3 84.7
Chaetodon trifascialis 149 95.1 89.4
Naso elegans 165 98.4 94.8
Pomacentrus sulfureus 443 97.9 93.2
Pygoplites diacanthus 35 90.4 77.4
Thalassoma hardwicke 73 96 91
Zanclus cornutus 53 97.1 97.8
Zebrasoma scopas 144 96.2 88.3
Average success rate 1197 95.7 89.3
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when background was not included in the training dataset, the addition
of environment thumbnails certainly helps the network to focus on
features unique to the fish body rather than to its surrounding.

We demonstrate that the best results were obtained after applying
two a posteriori decision rules on raw outputs from the neural network
trained with the most complete set of thumbnails. This model reached a
success rate of 94.1% for the 18 species tested, with only 3 species being
correctly identified in< 90% of cases. Therefore, training a neural
network with thumbnails from surrounding environment and thumb-
nails of part of each fish species is important to reach a high correct
identification rate in real-life cases. The class “Environment” adds
versatility to the training and hence helps the network to select features
that are robust to the context around fish. Including classes “part of
species” allows the network to classify correctly individuals partially
hidden by other fish or corals. Such situations were common in the test
dataset as illustrated by the fact that up to 9% of individuals of
Abudefduf vaigiensis were classified as “part of A. vaigensis” rather than
“whole A. vaigensis”.

The success rate of the best model is similar to that of the model of
Siddiqui et al. (Siddiqui et al., 2017) which reached a success rate of
94.3% on 16 species. This latter model was trained on a much smaller
training dataset of 1309 thumbnails than our model (> 900,000
thumbnails). However, Siddiqui's model was designed to identify fish
on videos recorded in partially controlled conditions (i.e. fish swim-
ming close to a baited camera) while in our case we tested the ability of
the model to identify fish partially hidden by corals as well as shot in all
positions and orientations. The few misidentifications by our best
model mostly occurred when only the face or back of fish was visible.
Such an issue could be easily circumvented in practice when analyzing
videos because it is likely that each fish will be seen from the side on at
least one frame (out of the 25 frames recorded per second by most
cameras).

Identification methods such as the ones presented here pave the way
towards new ecological applications. First, such methods can work
continuously and their performance is constant through time and hence
reproducible, contrary to human experts who work discontinuously and
are likely to perform differently through time. Given the high rate of
correct identifications, the best model could be used to pre-process a
massive number of thumbnails: up to 1 million thumbnails per day.
Furthermore, additional post processing procedures could be used. For

example, under a certain threshold (e.g. 98% certainty), human experts
could be asked to check the thumbnails identified by CNN models. Such
a two-step workflow would ensure a very high identification rate while
saving time of experts in fish taxonomy who will not have to identify
“obvious” fish that can be accuratly identified by models. In addition,
identification methods could also be used as a tool to initiate citizen
science programs, for example where divers upload images of fish and
obtain the most likely taxonomic identification from a CNN model.
Therefore, the continued development of these identification tools
could potentially offer benefits for both professional scientists col-
lecting massive raw data from the field, and for citizens to improve
their awareness and knowledge about biodiversity (e.g. (Norman et al.,
2017)).

The method tested here is one step towards the identification of
hundreds or thousands of fish species that occur on coral reefs (Kulbicki
et al., 2013). Since the performance of CNNs is known to increase with
the number of classes (i.e. the 1000 classes of ImageNet) (Krizhevsky
et al., 2012), there is no theoretical limit to such upscaling, the main
challenge being to increase the size of the training dataset and the
computer power. However, the identification of rare species will remain
challenge given the difficulty to collect enough thumbnails of such
species in different conditions to train the model. Future work is also
needed to broaden the range of conditions where the model is efficient
for most of species. In this paper, we considered only fixed videos re-
corded between 1m and 25m for both our training and testing datasets.
It would relevant to include deeper videos as well as videos recorded
with other protocols (e.g. baited remote underwater videos, transects).

Ultimately, the goal of automatic identification is not only to clas-
sify fish into species, but also to localize and count them, and estimate
their size (body length) on videos. The detection task in underwater
videos remains challenging as the context is particularly complex.
Towards this aim, including “environment” and “part of species” classes
in the training of models will enhance the accurate detection of fish
inidividuals partially hidden behind corals or other fish, for instance
using a sliding windows approach over a video frame. We could also
associate a classifier with a detector (Price Tack et al., 2016; Weinstein,
2015). Such algorithms focus on the detection of objects of interest
(such as fish individuals) in images. Ultimately, deep-learning based
methods could help marine ecologists to develop new video-based
protocols for a massive monitoring of increasingly imperiled reef fish

Fig. 2. Samples of thumbnails recognized by the CNN model and not recognized by humans (a), samples of thumbnails recognized by humans and not recognized by
the CNN model (b) and sample of thumbnails misidentified by both humans and the CNN model (c).
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biodiversity, in the same way as next-generation sequencing of DNA has
revolutionized several research domains including biodiversity mon-
itoring (Deiner et al., 2017).
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